Tunable ultrafast lasers with adjustable parameters, such as wavelength, intensity, pulse width and laser states are desirable as next-generation intelligent light sources. Due to complex nonlinear effects within the ultrafast system, it is challenging for laser state active controlling (LSAC) in ultrafast fiber lasers, especially for passive mode-locking, in a convenient and controllable manner.
Anisotropic low-dimensional materials with reduced in-plane symmetry exhibit polarization-dependent properties, providing additional degrees of freedom in compact tunable photonic devices.
In a new paper published in Light: Science & Applications, a team of scientists led by Professor Pu Zhou from the College of Advanced Interdisciplinary Studies, National University of Defense Technology, China, Professor Kai Zhang from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China, and co-workers has achieved the LSAC between conventional soliton (CS) and noise-like pulse (NLP) by polarization control based on a quasi-one-dimensional layered material switcher.
The polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two laser states, i.e., CS and NLP. The laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation. Digital coding was further demonstrated in this platform by employing the laser as a codable light source.
Polarization control is a practical approach to adjusting the intracavity parameters and controlling the operating laser states.
Summarizing the main findings from the tunable ultrafast laser, the scientists say, “(1) the anisotropic quasi-one-dimensional layered material Ta2PdS6 was utilized as a saturable absorber to modulate the nonlinear parameters effectively in an ultrafast system by polarization-dependent absorption; (2) the polarization-sensitive nonlinear optical response facilitates the Ta2PdS6-based mode-lock laser to sustain two distinct types of laser states, i.e., CS and NLP; (3) the laser state was switchable in the single fiber laser with a mechanism revealed by numerical simulation; and (4) digital coding was further demonstrated in this platform by employing the laser as a codable light source.”
“The controlled and stable switching of distinct pulsed laser modes in a single ultrafast fiber laser system represents significant advances in compact ultrafast photonics, which offers prospects of applications such as communications coding and optical switching.”
More information:
Zixin Yang et al, Ultrafast laser state active controlling based on anisotropic quasi-1D material, Light: Science & Applications (2024). DOI: 10.1038/s41377-024-01423-3
Provided by
Changchun Institute of Optics, Fine Mechanics And Physics
Citation:
Team reports on ultrafast laser state active controlling based on anisotropic quasi-1D material (2024, April 10)
retrieved 10 April 2024
from https://phys.org/news/2024-04-team-ultrafast-laser-state-based.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.
Denial of responsibility! NewsConcerns is an automatic aggregator of the all world’s media. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – [email protected]. The content will be deleted within 24 hours.